Comparing the Effectiveness of Knowledge Distillation and Weight-Based Pruning on Neural Networks

Amber Li, Cindy Zhang, and Michelle Li

Goals

- What is the best way to compress a deep neural network?
- Popular methods:
 - Weight-based pruning
 - Knowledge distillation
- Is using a combination of these methods more effective?
 - Meaningful trend in doing so?

Knowledge Distillation

- Introduced by Hinton et al. [1] in 2015
- Train a distilled model to emulate a deep neural network
- Train on logits of larger model
- Intuition: easier for small model to generalize the same way as large model than to directly learn the true parameterization

Weight-Based Pruning

- General algorithm from Han et al. [2]:
 - Randomly initialize the deep neural network
 - 2. Train to convergence
 - Prune connections with weights below threshold
 - 4. Retrain the sparse network

Lottery Ticket Hypothesis

- Algorithm from Frankle and Carbin [3]:
 - Randomly initialize a deep neural network with weights W
 - Train to convergence
 - Prune connections with the lowest weights
 - Reset remaining parameters to original values in W before retraining, creating the winning ticket
- Iterative pruning rather than one-shot

Previous Work

- Oguntola et al. [4] explores effectiveness of different deep model compression methods
 - Evaluated on the VGG19 model for CIFAR-10
 - Compressed 85x and retained 96% of accuracy
 - Stacking compression methods is generally very effective

LeNet-300-100 for MNIST

- 3 fully connected layers
- Original model has 266,610 parameters, 95.84% accuracy
- Pruning + distillation works better than each method individually until ~85% compression

LeNet-300-100 for MNIST

• No obvious patterns in test examples that are incorrectly classified

188787 188787 3270355	9 7 9 7 5 9 0 8 9 7 5 9 9 4 8 1 4	9 0 1 0 1 5 4 + 4 7 8 8 4 9 9 4 5 0 9 8 6	5 8 2 5 7 2 7 1 2 G 8 8 7 2 4 3 4 5 2 1 7 2 3 5 1 4 5 2 1 7 2 5 6
1 8 7 7 5 0 1 8 8 7 7 5 0 1 8 8 7 7 5 0 1 8 8 7 7 5 0 1 8 8 7 7 5 0	+ # B 0 3 7 2 8 6 7 8 4	9 8 2 5 3 9 <i>1</i> 7 1 4 7 6 6 5	5 5 2 N 7 6 / 6 7 7 N 7 7 6 2 5 7 5 5 9
2 7 5 7 6 7 3 7 7 7 8 9 8 9 a	7 1 9 7 1 9 7 1 9 7 3 9 7 4 1 0	0 3 7 5 Y 0 5 4 0 Y N 8 4 1 Z 1 Y 3 9 1 1	5 7 0 5 4 4 3 9 7 4 5 8 9 5 7 5 0 5 7 5 7 2 4 9 9 4 4 6 7 4

Original

Pruned (80% params removed)

Distilled (80% params removed)

LeNet-5 for MNIST

- 3 convolutional layers followed by 2 fully connected layers
- Original model has 61,706 parameters, 98.16% accuracy
- Using only distillation produces similar results to using pruning and distillation

ResNet-34 for CIFAR-10

- 34 convolutional layers with residual blocks
- Original model has ~21M parameters, 92.9% accuracy (pretrained)
- Pruned 20%, 40%, 60%, 80% of parameters

ResNet-34 for CIFAR-10

- Distillation using 3 different student models
 - 4 conv layers, 2 fc layers, increasing #s of channels
 - 1) 0.2M params (99% sparse)
 - 2) 1M params (95% sparse)
 - 3) 2.6M params (88% sparse)

ResNet-34 for CIFAR-10

- Accuracy increasing in # of parameters in student model, regardless of pruning
- Increased overfitting as # parameters increase

Comparing Neural Networks

How similar are the compressed models we produce using only distillation vs.

using pruning and distillation? For LeNet-5:

Comparing Distillation and Pruning + Distillation		Comparing Two Distillation Models			
Parameters	# of Test Examples	L2 Distance	Parameters	# of Test Examples	L2 Distance
Removed	Classified Differently		Removed	Classified Differently	
40%	127	12.46887	40%	119	20.06279
	147	19.80565		117	19.62773
50%	145	19.23841	50%	124	19.51043
	151	19.16463		138	18.67256
65%	155	12.17823	65%	120	17.75762
	158	15.24531		115	17.86453
75%	167	11.72104	75%	151	16.95058
	172	17.42870		163	17.70182

Comparing Neural Networks

LeNet-300-100 for MNIST:

Comparing Distillation and Pruning + Distillation		Comparing Two Distillation Models			
Parameters	# of Test Examples	L2 Distance	Parameters	# of Test Examples	L2 Distance
Removed	Classified Differently		Removed	Classified Differently	
50%	302	11.82822	50%	201	22.32834
	297	20.84023		190	22.56884
70%	292	19.27285	70%	222	20.88432
	317	19.14673		249	20.65374
90%	397	17.34818	90%	360	18.54195
	419	17.17063		372	19.82944

Comparing Neural Networks

ResNet-34 for CIFAR:

Comparing Distillation and Pruning + Distillation		Comparing Two Distillation Models			
Parameters	# of Test Examples	L2 Distance	Parameters	# of Test Examples	L2 Distance
Removed	Classified Differently		Removed	Classified Differently	
95%	1581	42.77	95%	1702	49.73
	1666	44.47	99%	2230	38.09
	1556	45.23			
	1523	43.17			
99%	2226	35.75			
	2299	37.29			
	2348	37.94			
	2300	36.03			

Conclusion

- Using both pruning and distillation does not perform significantly better than using only one of the methods
- Distillation vs. combination of pruning and distillation result in similar models
- Future work:
 - Experiment on other architectures/datasets
 - Try these methods on tasks beyond vision-centric classification
 - What happens when not all training data is correctly labeled?

References

[1] Hinton et al., "Distilling the Knowledge in a Neural Network." <u>https://arxiv.org/pdf/1503.02531.pdf</u>.

[2] Han et al., "Learning both Weights and Connections for Efficient

Neural Networks." https://arxiv.org/abs/1506.02626.

[3] J. Frankle and M. Carbin, "The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks." <u>https://arxiv.org/pdf/1803.03635.pdf.</u>

[4] Oguntola et al., "SlimNets: An Exploration of Deep Model Compression and Acceleration." <u>https://arxiv.org/pdf/1808.00496.pdf</u>.