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Abstract

Normalizing flows transform simple probability
distributions into complex distributions that are
efficient to sample from, efficient to evaluate, and
are highly expressive. They are a useful tool for
variational inference because they allow for ar-
bitrarily complex approximate posterior distribu-
tions. In this work, we provide a mathematical
and visual guide for understanding how normal-
izing flows work and how they are used for vari-
ational inference. We demonstrate the benefits
of variational inference with normalizing flows
relative to mean-field variational inference on a
Gaussian mixture model.

1. Introduction
Variational inference lies at the core of many commonly
used machine learning methods, from large-scale topic mod-
els to variational autoencoders. In order to enable efficient,
tractable inference, simplifying assumptions about the pos-
terior approximation have to be made. One commonly made
assumption is that the posterior distribution is part of the
mean-field family, which means that all of its latent variables
are independent of one another.

Restricting the family of distributions used to approximate
an intractable posterior distribution comes at a cost—the
more restrictive the family is, the less likely any of the ap-
proximations will resemble the true posterior. As a result,
we would like to have minimal restrictions on the complex-
ity of our posterior approximation while still ensuring that
variational inference is computationally tractable.

Normalizing flows is one tool that can be used to pro-
duce rich posterior approximations for variational inference
(Rezende & Mohamed, 2016). It consists of a series of
invertible and differentiable mappings that transform simple
probability distributions into more complex ones. We can
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learn and adjust the parameters of these transforms so that
the resulting distribution approximates our true posterior.
These resulting distributions are efficient to sample from and
evaluate—the key to this is the change-of-variables formula.

This paper is a tutorial on how normalizing flows work
and how they are used for variational inference. In
Section 2, we review recent work on normalizing flows
and its applications. In Section 3, we describe the
change-of-variables formula as it relates to normalizing
flows and provide figures that illustrate that transformation
of probability distributions. Section 4 goes through the
implementation of two types of flows: planar flows and
radial flows. In Section 5, we go through the procedure of
performing variational inference with normalizing flows
and illustrate the process of fitting normalizing flows to
toy distributions. Empirical results for Gaussian mixture
models are presented in Section 6, and our conclusions
are presented in Section 7. Especially because this is
meant to be an educational guide, we encourage the
enthusiastic reader to look at all our code at https:
//colab.research.google.com/drive/
1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=
sharing, which provides some animations and interactiv-
ity.

2. Background and Related Work
Normalizing flows were first introduced to machine learning
back in the context of density estimation. They were used to
estimate densities and marginals on never-before-seen data,
which allowed for detecting corruptions of images (Rippel
& Adams, 2013) and image generation. The introduction of
coupling flows (Dinh et al., 2015) led to competitive results
for image generation for models trained on MNIST, TFD,
SVHN, and CIFAR-10.

Further advances were made in the area of image genera-
tion by the Glow architecture (Kingma & Dhariwal, 2018),
which produced compelling full-color images using normal-
izing flows composed of invertible convolutions. This work
has been extended to produce high-dimensional images as
well (Behrmann et al., 2019; Grathwohl et al., 2018).

In the context of inference, normalizing flows can be used
for both sampling and variational inference. In importance
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sampling, the user-specified density function being sampled
from can be implemented and optimized with normalizing
flows (Müller et al., 2019). Flows can be applied to MCMC
algorithms to model the Hamiltonian dynamics in HMC
(Neal et al., 2011) or to reparameterize the target distribution
(Papamakarios et al., 2021).

As we will discuss further, normalizing flows are very use-
ful as posterior approximations in variational inference
(Rezende & Mohamed, 2016; Kingma et al., 2016; Berg
et al., 2018). They can be thought of as a reparameterization
trick or a generalized application of the change-of-variables
formula. A fixed distribution that is easy to sample from
and evaluate is transformed into a complex distribution that
is easily reparameterizable by design. In the following sec-
tion, we will go into more detail on this transformation
procedure.

3. Transforming Probability Distributions
To transform a probability distribution, we can perform a
change of variable transformation, defined below.

Let z ∈ Rd be a random variable with distribution q(z) and
f : Rd → Rd an invertible smooth mapping. We can use
f to transform z ∼ q(z). The change of variables formula
tells us that the probability density pz′(z’) is the product of
the probability density pz(f−1(z’)) and a volume correction
term |det J(f−1(z’))| (Kobyzev et al., 2021). The resulting
random variable z′ = f(z) has the following probability
distribution

q(z′) = q(z)

∣∣∣∣ det
δf−1

δz′

∣∣∣∣ = q(z)

∣∣∣∣ det
δf

δz

∣∣∣∣−1

(1)

where the last equality is obtained through the inverse func-
tion theorem.

How does volume correction work? We can think of a
determinant as the local, linearized rate of volume change of
a transformation. If we take dz to be the small neighborhood
around z and dz’ to be the small neighborhood around z’
that dz maps to, then

|det J(f−1(z’))| ≈ Volume(dz)
Volume(dz’)

We see in equation (1) that if the volume of dz’ is greater
than the volume of dz, then the probability mass pz′(z’)
is less than the probability mass pz(z). Similarly, if the
volume of dz’ is less than the volume of dz, the pz′(z’) >
pz(z). Intuitively, this means |det J(f−1(z’))| balances the
probability density function pz′(z′) so that it integrates to 1.
Additional intuition and visuals about how this works can
be found in (Jang, 1970), (Jean, 2018), and (Cheng, 2013).

3.1. Chaining transformations

If we start with a random vector z0 with distribution q0,
we can apply a series of invertible, differentiable mappings
fi, i ∈ 1, · · · , k with k ∈ R+ and obtain a normalizing
flow:

zk = fk ◦ fk−1 ◦ ... ◦ f1(z0)

The distribution of zk ∼ qk(zk) will be given by

qk(zk) = q0(f
−1
1 ◦ f−1

2 ◦ ... ◦ f−1
k (zk))

k∏
i=1

∣∣∣∣det
δf−1
i

δzi

∣∣∣∣
= q0(z0)

k∏
i=1

∣∣∣∣det
δfi
δzi−1

∣∣∣∣−1

Note that the Chain Rule tells us that the determinant of
the Jacobian of f is the product of the determinants of the
individual fk.

This series of transformations can transform a simple prob-
ability distribution (e.g. Gaussian) into a complicated
multi-modal one. We will often write this in terms of log-
probabilities to simplify the computation and obtain

logqK(zk) = logq0(z0)−
k∑
i=1

log
∣∣∣∣det

δfi
δzi−1

∣∣∣∣
To be of practical use, normalizing flows should satisfy
several conditions (Kobyzev et al., 2021):

• Be invertible because we will need f−1 to compute the
likelihood, as we will see later

• Be sufficiently expressive to model the distribution of
interest

• Be computationally efficient: f and the determinant
must be efficient to calculate. The Jacobian determi-
nant generally requires O(LD3) operations, where D
is the dimension of the Jacobian and L is the number
of chained mappings, but we will see that in the planar
and radial flows this determinant can be computed in
linear time, O(LD).

There are two ways we can use normalizing flows: we can
generate samples using x = f(z) with z ∼ pz(z), and
we can evaluate the model’s density at a given point using
px(x) = pz(x)|det Jf (x)|−1.

To draw samples, we need to sample the base distribution
pz(z) and compute the forward transformation f . To eval-
uate the model’s density, we need to perform the inverse
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transformation f−1, calculate its Jacobian determinant, and
evaluate the density pz(x).

4. Types of flows
4.1. Planar flows

Planar flows are a family of transformations of the form

f(z) = z + uh(wT z + b)

where u ∈ RD and w ∈ RD are vectors, b ∈ R is a
scalar bias, and h is a smooth non-linear activation function
that we apply element-wise (equation 13 in (Rezende &
Mohamed, 2016)). The second term can be interpreted as a
MLP with a bottleneck hidden layer with a single unit. Since
information goes through the single bottleneck, a long chain
of transformations is required to capture high-dimensional
dependencies (Rezende & Mohamed, 2016).

To compute |det(∂f∂z )|, note that: daT x
dx = a (matrix cook-

book, page 10), and that for an invertible matrix A and
vectors x and y, det(A + xyT ) = (1 + yTA−1x) det(A)
(matrix determinant lemma).

Then we have:

|det(∂f
∂z

)| = |det(∂z
∂z

+
∂h(wT z + b)

∂z
uT )|

= |det(I + h′(wT z + b)
∂(wT z + b)

∂z
uT |

= |det(I + h′(wT z + b)wuT |
= |(1 + uTψ(z)) det(I)

= |1 + uTψ(z)|

where ψ(z) = h′(wT z + b)w Inserting this expression into
our equation for the final density at the end of the chain of
mappings, it results that

log(qk(zk)) = log(q0(z0))−
K∑
k=1

log(|1 + uTψ(z)|)

It is important to note that not all parameters make f invert-
ible. Invertibility conditions for planar flows are derived
in (Appendix A.1. of (Rezende & Mohamed, 2016)). A
sufficient condition for the invertibility of f is wTu ≥ −1,
which is enforced by considering, instead of u, taking û =
u+(m(wTu)−wTu) w

||w||2 wherem(x) = −1+log(1+ex).

Note that this family allows for linear-time computation of
the determinant (Papamakarios et al., 2019).

Figure 1. The effect of a single planar flow with parameters w =
(4, 0), u = (2, 0), b = 0 on a multivariate normal distribution

4.2. Radial flows

Radial flows are a family of transformations that modify an
initial density around a reference point zr, that take the form

f(z) = z + βh(α, r)(z − z0)

where r = ∥z − zr∥2, α ∈ R+, and β ∈ R, and h(α, r) =
1

α+r (equation 14 in (Rezende & Mohamed, 2016)).

|det(∂f
∂z

)| = |det(∂z
∂z

+ β
∂h(α, r)

∂z
(z − zr)T + βh(α, r)

∂z
∂z

)|

= |det((1 + βh(α, r))I + β
∂h(α, r)

∂z
(z − zr)T )|

because

∂r

∂z
=
∂||z − zr||2

∂z
=

z − zr
||z − zr||2

We apply chain rule to obtain

∂h(α, r)

∂z
= h′(α, r)

z − zr
||z − zr||2

We note that the matrix z−zr
||z−zr||2 (z − zr)T has rank 1, and

can therefore be diagonalized into

z − zr
||z − zr||2

(z − zr)T = PAP−1

where A is a matrix with all zeros except for the topleft
element, which is r.

Finally, noting that det(PAP−1) = det(A), we get that

|det(∂f
∂z

)| = (1+βh(α, r))D−1(1+βh(α, r)+βh′(α, r)r)

Inserting this expression into our equation for the final den-
sity at the end of the chain of mappings, it results that

log(qk(zk)) = log(q0(z0))−
K∑
k=1

[(D − 1)log(1 + βh(α, r))+

log(βh(α, r) + βh′(α, r)r)]
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Again, the choice of parameter values will determine if f is
invertible. A sufficient condition for the invertibility of f is
β ≥ α, which is enforced by taking β̂ = α+m(β) where
m(x) = log(1 + ex) (Rezende & Mohamed, 2016).

Note that this family allows for linear-time computation of
the determinant (Papamakarios et al., 2019).

Figure 2. The effect of a single radial flow with parameters α =
0.5, β = 9, zr = (−0.5, 0.5) on a multivariate normal distribution

4.3. Effect on transformation

The planar and radial flows get their names from their ef-
fect on distributions. Below we evaluate the inverse of the
Jacobian for different sets of parameters. Depending on the
parameters, the planar flow induces an expansion or contrac-
tion of the initial density along the hyperplane defined by
wT z + b = 0. Similarly, the radial flow induces an expan-
sion or contraction of the initial density around the reference
point zr.

Recall that when applying a single flow, the resulting distri-
bution is expressed as

q(z′) = q(z)

∣∣∣∣ det
δf

δz

∣∣∣∣−1

We can plot the inverse of the absolute value of the deter-
minant of the Jacobian to visualize the change in volume
that is occurring to get an understanding and intuition about
how the distribution is being transformed, which we see in
figures 3 and 4.

Figure 3. Evaluation of
∣∣ det δf

δz

∣∣−1
for an expansion away from the

line x = 1, with parameters w = (−1, 0), u = (−0.9,−0.9), b =
1 (left), and for a contraction towards the line y = 1, with parame-
ters w = (0,−1), u = (0.9, 0.9), b = 1 (right).

Figure 4. Evaluation of
∣∣ det δf

δz

∣∣−1
for a radial contraction towards

the point (1, 1), with parameters α = 2, β = −0.99, zr =
(1.0001, 1.00001) (left), and for a radial expansion away from
the point (1, 1) , with parameters α = 2, β = 0.99, zr =
(1.00001, 1.00001) (right).

5. Fitting normalizing flows
So far, we have composed a series of invertible mappings
to form a transformation f , which is then applied to some
known base distribution px(x), typically a multivariate nor-
mal distribution. This forms a new distribution py(y) that
can be evaluated and sampled from using the change of
variables formula. Our flow-based model consists of the
transformation of px(x) into our more complex distribution
py(y) through the chain of functions that form f . Let our
model be parameterized by θ = (ϕ, ψ), where ϕ are the
parameters of f and ψ are the parameters of px(x).

To perform variational inference, we want our flow-based
model py(y; θ) to be able to approximate a target distribu-
tion p∗x(x).We can do so by minimizing the KL divergence
between py(y; θ) and p∗x(x). Depending on what we know
about our target distribution, we can choose to either min-
imize the forward KL divergence or the reverse KL diver-
gence.

5.1. Forward KL Divergence

We minimize the forward KL divergence when we have
existing samples from the target distribution p∗x(x). The
forward KL divergence between py(y; θ) and p∗x(x) can be
written as

L(θ) = DKL(p
∗
x(x)py(y; θ))

= Elog p∗x(x)
[log p∗x(x)− log py(y; θ)]

= −Epy(log p∗x(x)[log py(y; θ)] + C

where C is a constant not dependent on θ. From our change
of variables formula, we know that

py(y; θ) = px(f
−1(y, ϕ);ψ)|det J(f−1(y;ϕ))|. (5)

Substituting this equation into our loss function, we get

L(θ) = −Elog p∗x(x)
[log px(f

−1(y, ϕ);ψ)+log |det J(f−1(y;ϕ))|]+C.

Using samples {xi}Ni=1 from the target distribution p∗x(x),
we can compute a Monte Carlo estimate of this expectation,
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so the loss function we want to minimize becomes

L(θ) = − 1

N

N∑
n=1

log px(f
−1(xi, ϕ);ψ)+log |det J(f−1(xi;ϕ))|.

(6)
In practice, θ is then typically optimized using stochastic
gradient-based methods.

5.2. Reverse KL Divergence

Suppose we have a target distribution p∗x(x), and we are able
to evaluate this distribution up to a normalizing constant, i.e.
we can evaluate p̃x(x) where

p∗x(x) =
p̃x(x)

Z
.

In this case we want to minimize the reverse KL divergence,
given by the following equation:

L(θ) = D +KL(py(y; θ)p
∗
x(x)) = Epy(y;θ)[log py(y; θ)

− log p∗x(x)].

Because we cannot sample from the target distribution, we
want to instead reparameterize this expectation to be with
respect to the base distribution px(x;ψ).Given x = f−1(y),
the change of variables formula tells us that

px(x;ψ) = py(y; θ)|det J(f(x;ϕ))| (7)

=⇒ py(y; θ) =
px(x;ψ)

|det J(f(x;ϕ))|
.

Using this equation, the expectation in our loss function can
be rewritten as

L(θ) = Epx(x;ψ)
[
log

px(x;ψ)

|det J(f(x;ϕ))|
− log p∗x(x)

]
= Epx(x;ψ) [log px(x;ψ)− log |det J(f(x;ϕ))| − log p∗x(x)]

This loss function can also be minimized iteratively via
stochastic gradient descent.

5.3. Representative Power of Normalizing Flows

We reproduce the experiments in section 6.1 of (Rezende &
Mohamed, 2016) to show that our implementation matches
the performance displayed in the paper. Each energy func-
tion represents interesting properties. The first is symmetric,
with a large gap between the two regions of high density;
the second has periodic properties, and the second has
periodic properties with some variation. In figures 5 and 6
we display the samples generated by the trained normalizing
flow with parameters K = 32 for 32 planar flow layers,
and 4000 epochs during the training process alongside

the true potential energy function. To see an animation of
how the samples get transformed through each individual
flow, see the accompanying jupyter notebook https:
//colab.research.google.com/drive/
1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=
sharing.

Figure 5. Samples (right) generated from the trained normalizing
flow with 32 planar layers on the first potential energy function
(left) from section 6.1 of (Rezende & Mohamed, 2016).

Figure 6. Samples (right) generated from the trained normalizing
flow with 32 planar layers on the third potential energy function
(left) from section 6.1 of (Rezende & Mohamed, 2016).

6. Experiments
We demonstrate the benefit of using normalizing flows for
variational inference by comparing its performance on a
Gaussian mixture model. A Gaussian mixture model de-
scribes a distribution of the form

p(x) =

K∑
k=1

πkN (x|µk,Σk), (1)

where πk represents the mixing coefficients and
∑K
k=1 πk =

1. Each cluster is a normal distribution parameterized by
mean µk and covariance Σk.

In our experiment setup, we use variational inference to
approximate a Gaussian mixture model with 4 clusters. The
density plot of the original distribution can be seen in Figure

https://colab.research.google.com/drive/1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=sharing
https://colab.research.google.com/drive/1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=sharing
https://colab.research.google.com/drive/1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=sharing
https://colab.research.google.com/drive/1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=sharing
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7 (top-left). The top-right plot in Figure 7 shows the distri-
bution converged upon by the No U-Turn Sample (Hoffman
et al., 2014) after 2000 samples.

When performing mean-field variational inference, we use
ADVI (Kucukelbir et al., 2016) on the Gaussian mixture
model. The variables being estimated are the mixing com-
ponents πi, the means µi, and the covariances Σi. These
variables depend on the number of components initially
specified; the result of running ADVI on a 2-component
Gaussian mixture model is displayed in Figure 7 (middle-
left), and the result of running ADVi on a 4-component
Gaussian mixture model in displayed in Figure 7 (middle-
right). We see that in the 2 component model, the 3 smaller
components of the original distribution are roughly aver-
aged together. Because the 2 component model does not
contain any distributions that can closely approximate the
target distribution, the distribution that ADVI converges to
is a poor approximation.

We can compare these distributions to the distributions pro-
duced by fitting 4 planar flows (Figure 7, bottom-left) and
32 planar flows (Figure 7, bottom-right) to the Gaussian
mixture model. We see that 32 flows succeeds at captur-
ing the 4 clusters, which shows that our normalizing flows
model grows more expressive as we chain more transfor-
mations. Normalizing flows could produce an even better
approximation of the target distribution given more layers.
Through this example, we see the benefit of using normal-
izing flows, which does not require a specification of the
number of clusters, in comparison to mean-field ADVI.

7. Conclusion
Normalizing flows transform simple probability distri-
butions into complex ones through a series of invertible
and differentiable mappings and can be used to produce
rich posterior approximations for variational infer-
ence. We provide a mathematical and visual tutorial
to help understand how normalizing flows work and
how they can be used for variational inference by illus-
trating the transformation of probability distributions
and working through the mathematics of planar and
radial flows. For a more interactive experience, the
interested reader than look at our code at https:
//colab.research.google.com/drive/
1KrovUf2mh-x8DWNqj3LWc-i48o5jpcFt?usp=
sharing. In future work, we aim to demonstrate varia-
tional inference with normalizing flows on a real dataset
and provide the mathematical and visual explanations of
more intricate, complicated flows.
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